

Figure 1. A computer generated perspective drawing of $\left[\mathrm{Cl}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mathrm{CS}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4} \cdot 0.2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The phenyl carbons of the PPh_{3} groups have been omitted for clarity.
and $c=27.190$ (2) \AA and $\beta=95.061$ (7) ${ }^{\circ}$. A total of 5351 reflections were judged observed after correction for Lorentz, polarization, and background effects. All 90 nonhydrogen atoms were located using heavy atom methods. Fullmatrix least-squares refinement ${ }^{7}$ varying positional and anisotropic thermal parameters for the atoms of the complex and positional and occupancy parameters for the solvent converged to the present discrepancy index of 0.07 .
The computer generated drawing (Figure 1) of the dimeric cation shows a square-planar geometry about each of the platinum atoms with the two planes being perpendicular $\left(89.97^{\circ}\right)$ to each other. Donor groups to $\mathrm{Pt}(2)$ involve $\mathrm{P}(3)$ and $\mathrm{P}(4)$ of the two $\mathrm{Ph}_{3} \mathrm{P}$ ligands and two sulfur atoms of the metallodithiocarboxylate ligand, $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{Cl}) \mathrm{Pt}\left(\mathrm{CS}_{2}^{-}\right)$. Structurally this ligand is similar to the familiar dithio acid ($\mathrm{R}-\mathrm{CS}_{2}{ }^{-}$), xanthate ($\mathrm{RO}-\mathrm{CS}_{2}^{-}$), and dithiocarbamate $\left(\mathrm{R}_{2} \mathrm{~N}-\mathrm{CS}_{2}{ }^{-}\right.$) ligands. ${ }^{8,9}$ The $\mathrm{Pt}(2)-\mathrm{S}(1), 2.353$ (5) \AA, and $\mathrm{Pt}(2)-\mathrm{S}(2), 2.361$ (5) \AA, bond distances are similar to an average value of $2.32 \AA$ reported for the $\mathrm{Pt}-\mathrm{S}$ bond distances in the dithiocarbamate complex, $\left(\mathrm{Et}_{2} \mathrm{NCS}_{2}\right)_{2} \mathrm{Pt} .{ }^{10}$ The $\mathrm{S}(1)-\mathrm{Pt}(2)-\mathrm{S}(2)$ bond angle is $72.4(2)^{\circ}$ as compared to 75.5° for the analogous angle in the above-mentioned dithiocarbamate complex. The C(1)-S(1), 1.709 (21) \AA, and $C(1)-S(2), 1.692$ (20) \AA, bond distances and the $S(1)-$ C(1)-S(2) bond angle (109.9 (9) ${ }^{\circ}$) are very similar to related parameters reported ${ }^{8,9}$ for a variety of dithiocarbamate and xanthate complexes. The $\mathrm{Pt}(1)-\mathrm{C}(1)$ bond distance ($1.950(15) \AA$) is among the shortest $\mathrm{Pt}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ distances known. In the Pt -carbene complexes where this bond might be expected to be shortened due to multiple bonding, the values ${ }^{11-13}$ range from 1.98 to $2.13 \AA$. For the complex cis $-\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)[\mathrm{C}(\mathrm{OMe})(\mathrm{NHPh})]$ where the bond distance ${ }^{14}$ is 1.98 (2) \AA, Cotton and Lukehart ${ }^{13}$ have estimated a $\mathrm{Pt}-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bond order of 1.2 suggesting the presence of some Pt to $\mathrm{C} \pi$-bonding. The shortness $(1.95 \AA$) of the $\mathrm{Pt}(1)-\mathrm{C}(1)$ bond in the metallodithiocarboxylate ligand suggests Pt to $\mathrm{C} \pi$-bonding occurs here as well. Further structural details can be found in Tables I-III (supplementary material).

While we have not been able to definitively establish the path which leads from the impure $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{BF}_{4}$ to the metallodithiocarboxylate complex, a possible route is one which involves initial slow hydrolysis (eq 2) of the reactive thiocarbonyl complex by small amounts of atmospheric moisture. This could be followed by attack of $\mathrm{H}_{2} \mathrm{~S}$ produced in reaction 1 on unreacted thiocarbonyl complex (eq 3). The resulting metallodithiocarboxylate ligand could then react (eq 4) with the carbonyl complex generated in reaction 1 to

$$
\begin{align*}
& \left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})^{+}+\mathrm{H}_{2} \mathrm{~S} \longrightarrow \\
& \left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{CS}_{2}^{-}\right)+2 \mathrm{H}^{+} \tag{3}\\
& \left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{CS}_{2}^{-}\right)+\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CO})^{+} \longrightarrow \\
& \quad\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{Cl}) \mathrm{Pt}\left(\mathrm{CS}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-}+\mathrm{CO} \tag{4}
\end{align*}
$$

give the dimeric product. Support for reaction 3 derives from the mechanism postulated for the reaction of $\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CO})^{+}$with $\mathrm{H}_{2} \mathrm{O}$ to form CO_{2} and $\left(\mathrm{R}_{3} \mathrm{P}\right)_{2} 2 \mathrm{Pt}(\mathrm{Cl}) \mathrm{H}$. It involves $\mathrm{H}_{2} \mathrm{O}$ attack at the carbonyl carbon atom. ${ }^{15}$ In the formation of the metallodithiocarboxylate complex, the concentration of $\mathrm{H}_{2} \mathrm{O}$ is important. At high concentrations, only the carbonyl complex is produced as noted above (eq 2). Very low concentrations presumably allow reactions 3 and 4 to occur, resulting in the formation of the dimeric product.

The unusually high stability of this metallodithiocarboxylate complex suggests that it will be possible to synthesize other complexes bearing this general type of ligand.

Supplementary Material Available. The fractional coordinates (Table 1), bond distances (Table 11), and important bond angles (Table 111) will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche ($105 \times 148 \mathrm{~mm}$, $24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D.C. 20036. Remit check or money order for $\$ 3.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JACS-75-656.

References and Notes

(1) I. S. Butler and A. E. Fenster, J. Organometal. Chem., 66, 161 (1974).
(2) (a) E. D. Dobrzynski and R. J. Angelici, submitted for publication. (b) Very recently a closely related complex, $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{Cl})(\mathrm{CS})\right] \mathrm{Cl}$, was postulated to form in the reaction of $\mathrm{Pt}(0)$-phosphine complexes with thiophosgene. It was extremely unstable and was characterized only by its $1400 \mathrm{~cm}^{-1}$ infrared absorption. M. Kubota and C. J. Curtis, Mnorg. Chem., 13, 2277 (1974).
(3) L. Busetto, M. Graziani, and U. Belluco, Inorg. Chem., 10, 78 (1971)
(4) C. R. Green and R. J. Angelici, Inorg. Chem., 11, 2095 (1972).
(5) H. C. Clark, K. R. Dixon and W. J. Jacobs, J. Amer. Chem. Soc., 90, 2259 (1968).
(6) B. D. Dombek and R. J. Angelici, J. Amer. Chem. Soc., 95, 7516 (1973).
(7) The following library of crystallographic programs was used: C. R. Hubbard, C. O. Quicksall, and R. A. Jacobson, "The Fast Fourier Algorithm and the programs ALFF, ALFFDP, ALFFT and FRIEDEL," USAEC Report IS-2625, lowa State University-Institute for Atomic Research, Ames, lowa, 1971; W. R. Busing, K. O. Martin, and H. A. Levy, 'A Fortran Crystallographic Least Squares Program," USAEC Report ORNL-TM305, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965; C. Johnson, "ORTEP, A Fortran Thermal-Ellipsoid Plot Program," U.S. Atomic Energy Commission Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1965.
(8) D. Coucouvanis, Progr. Inorg. Chem., 11, 233 (1970).
(9) R. Eisenberg, Progr. Inorg. Chem., 12, 295 (1970).
(10) A. Z. Amanov, G. A. Kukina, and M. A. Porai-Koshits, Zh. Strukt. Khim., 8 (1), 174 (1967).
(11) D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Chem. Rev., 72, 545 (1972).
(12) R. F. Stepaniak and N. C. Payne, J. Organometal. Chem., 57, 213 (1973).
(13) F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., 16, 487 (1972).
(14) E. M. Badley, J. Chatt, and R. L. Richards, J. Chem. Soc. A, 21 (1971).
(15) H. C. Clark and W. J. Jacobs, Inorg. Chem., 9, 1229 (1970).

James M. Lisy, Edward D. Dobrzynski Robert J, Angelici,* Jon Clardy*
Ames, Laboratory-USAEC and Department of Chemistry Iowa State University Ames, Iowa 50010
Received November 6, 1974

On the Alleged Intermediacy of a Silacyclopropane in the Pyrolysis of Phenyltrimethylsilyldiazomethane

Sir:

The synthesis, isolation, and characterization of the long elusive silacyclopropane ring system by Seyferth ${ }^{1}$ can be expected to remove inhibitions from the proposal of such compounds as reactive intermediates. Earlier this year Ando

Scheme I

2
$\sqrt{\text { insertion }}$

4
and coworkers ${ }^{2}$ reported that the gas-phase pyrolysis (550°, N_{2} flow) of phenyltrimethylsilyldiazomethane (1) afforded benzosilacyclopentene (4) and that this product was evidence for the intermediacy of silacyclopropane (3), which resulted from the intramolecular insertion of carbene 2 into a C-H bond of a methyl group (Scheme I).

We had previously observed the formation of 4, and rationalized it in terms of quite a different mechanism. We considered the precursor to 4 to be the carbene 5, itself formed by a well-precedented sequence of steps involving carbene-to-carbene rearrangements ${ }^{3}$ (Scheme II). Carbene 5 can lead to 4 by a straightforward insertion into a carbonhydrogen bond.

A method of distinguishing between these two mechanistic pathways is obvious once it is noted that the benzylic carbon of 1 remains aliphatic in the Ando mechanism (Scheme I) but becomes the aromatic carbon bonded to silicon in the carbene-interconversion mechanism (Scheme II). Phenylmagnesium bromide was converted to ${ }^{13} \mathrm{C}$ labeled benzoic acid with labeled CO_{2} and then to labeled 1 by the procedure of Brook and Jones. ${ }^{4}$ Mass spectrometric analysis of the intermediate tosylhydrazone indicated a $24.3 \%{ }^{13} \mathrm{C}$ content. Thermal decomposition of labeled 1, carried out in the inlet port of the preparative gas chromatograph at 300°, afforded 4. Comparison of the ${ }^{13} \mathrm{C} \mathrm{nmr}$ spectra of labeled and unlabeled 4 revealed no enhancement of the three aliphatic carbon absorptions ($31.81,11.47$, and -1.59 ppm from TMS) and hence no incorporation of ${ }^{13} \mathrm{C}$ into the saturated carbons of the five-membered ring. The absorption of only one aromatic carbon (139.86 ppm from TMS) was enhanced by an average factor of 19.7 over the other aromatic carbon absorptions.

Scheme II

2

A second sample of 4 was prepared independently by the flash pyrolysis $\left(420^{\circ}(0.5 \mathrm{~mm})\right.$) of the lithium salt of the tosylhydrazone of phenyltrimethylsilyl ketone. The ketone was prepared from ${ }^{13} \mathrm{C}$ labeled methyl benzoate (12.8\%) by the method of Picard, et al. ${ }^{5}$ In this case an average enhancement of 13 -fold was observed for the same aromatic absorption as was found previously in the decomposition of the diazo compound.

The conclusion that the labeled carbon is now in the aromatic ring is further confirmed by a comparison of the mass spectra of the labeled and unlabeled benzosilacyclopentenes (4). The fragmentation of 4 proceeds through loss of a methyl group and then the loss of $\mathrm{C}_{2} \mathrm{H}_{4}$ (there is no metastable peak for the $\mathrm{C}_{2} \mathrm{H}_{4}$ loss, so the concertedness of the process is unknown) to yield an ion of the composition $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Si}(m / e 119.03185 \pm 0.0006$, calcd 119.0317). Comparison of the m/e $162 / 163$ and $119 / 120$ intensity ratios indicated a ${ }^{13} \mathrm{C}$ content of 24.8% in the parent ion with 23.6% in the fragment ion. Thus, within reasonable experimental error limits, all of the extra ${ }^{13} \mathrm{C}$ remained with the aromatic fragment.

In summary, the thermal conversion of 1 to 4 does not involve a silacyclopropane but rather provides a further example of the phenylcarbene-cycloheptatrienylidene interconversion.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the National Science Foundation (Grant GP 30797 X) for support of this research.

References and Notes

(1) R. L. Lambert, Jr., and D. Seyferth, J. Amer. Chem. Soc., 94, 9246 (1972).
(2) W. Ando, A. Sekiguchi, T. Hagiwara, and T. Migita, J. Chem. Soc., Chem. Commun., 372 (1974).
(3) R. A. LaBar and W. M. Jones, J. Amer. Chem. Soc., 96, 3645 (1974); R L. Tyner, W. M. Jones, Y. Öhrn, and J. R. Sabin, ibid., 96, 3765 (1974); T. T. Coburn and W. M. Jones, ibid., 96, 5218 (1974), and references therein.
(4) A. G. Brook and P. F. Jones, Can. J. Chem., 47, 4353 (1969).
(5) J. P. Picard, R. Calas, J. Dunoguès, and N. Duffaut, J. Organometal. Chem., 26, 183 (1971).

Thomas J. Barton, * John A. Kilgour
Department of Chemistry, Iowa State University
Ames, Iowa 50010
Robert R. Gallucei, Anthony J. Rothschild, Joel Slutsky
Anthony D. Wolf, Maitland Jones, Jr.* Department of Chemistry, Princeton University Princeton, New Jersey 08540
Received September 26, 1974

Crystal Structure of 5,6,11,12-Tetradehydrodibenzo $[a, e]$ cyclooctene (sym-Dibenzo-1,5-cyclooctadiene-3,7-diyne)

Sir:

We report the results of a single-crystal X-ray structure determination on the recently described ${ }^{\prime}$ 5,6,11,12-tetradehydrodibenzo[a,e]cyclooctene (1). The only other previously known compound with two triple bonds in the eightmembered system is 1,5 -cyclooctadiyne (2), for which only

